Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA.

Gradia S., Subramanian D., Wilson T., Acharya S., Makhov A., Griffith J., Fishel R.

Mismatch recognition by the human MutS homologs hMSH2-hMSH6 is regulated by adenosine nucleotide binding, supporting the hypothesis that it functions as a molecular switch. Here we show that ATP-induced release of hMSH2-hMSH6 from mismatched DNA is prevented if the ends are blocked or if the DNA is circular. We demonstrate that mismmatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts hMSH2-hMSH6 into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. Our results support a model for bidirectional mismatch repair in which stochastic loading of multiple ATP-bound hMSH2-hMSH6 sliding clamps onto mismatch-containing DNA leads to activation of the repair machinery and/or other signaling effectors similar to G protein switches.

Mol. Cell 3:255-261(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again