Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbeta1.

Unda F.J., Martin A., Hilario E., Begue-Kirn C., Ruch J.V., Arechaga J.

Dental papillae (DP) isolated from first lower molars of 17-day-old mouse embryos were cultured in the presence of combinations of the following growth factors: FGF1, FGF2, and TGFbeta1. After 6 days in culture, only the DP treated with FGF1+TGFbeta1 contained differentiated odontoblast-like cells at the periphery of the explants, and these cells secreted extracellular matrix similar to predentin. Surprisingly, treatments with FGF2+TGFbeta1 induced cell polarization at the surface of the explants but no matrix secretion was observed. Electron microscopy and histochemical analysis of odontoblast markers showed that differentiated cells induced by FGF1+TGFbeta1 exhibited cytological features of functional odontoblasts with matrix vesicle secretion and mineral formation, positive alkaline-phosphatase activity, and type-I collagen production. DP cultured in the presence of FGF2+TGFbeta1 showed cell polarization and long and thin cell processes containing matrix vesicles; however, type-I collagen secretion was not detected and alkaline-phosphatase activity was completely inhibited. Our results indicate that, in our culture system, exogenous combinations of FGF1, FGF2, and TGFbeta1 interact with preodontoblasts and induce cell polarization or differentiation, which can be studied separately in vitro. Thus, FGF1 and TGFbeta1 do have a synergic effect to promote morphological and functional features of differentiated odontoblasts whereas FGF2 seems to modulate TGFbeta1 action, causing morphological polarization of preodontoblasts but limiting the functional activity of these cells in terms of type-I collagen secretion and alkaline-phosphatase activity.

Dev. Dyn. 218:480-489(2000) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again