Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The differential molecular mechanisms underlying proenkephalin mRNA expression induced by forskolin and phorbol-12-myristic-13-acetate in primary cultured astrocytes.

Won J.S., Suh H.W.

In rat astrocytes, forskolin (FSK; 5 microM) and phorbol-12-myristic-13-acetate (PMA; 2.5 microM) increase the proenkephalin (proENK) mRNA level via different pathways. FSK-induced proENK mRNA expression is independent of protein de novo synthesis, and well correlated with CREB phosphorylation. This is in contrast to PMA-induced proENK mRNA expression that is dependent on protein de novo synthesis and is well correlated with the increase of AP-1 DNA binding activity rather than CREB phosphorylation. Differential regulation of AP-1 proteins by PMA and FSK was also observed. While c-Fos, Fra-2 and JunB were increased in response to either stimuli, only Fra-1, c-Jun and JunD were increased by PMA. The combined treatment with FSK and PMA additively increased the proENK mRNA level, which was correlated with AP-1 or ENKCRE-2 DNA binding activity, and CREB phosphorylation. Dexamethasone (DEX; 1 microM) further enhanced FSK- or PMA-induced proENK mRNA expression, which was not correlated with the activation of AP-1 expression and CREB phosphorylation, suggesting that synergistic interaction of glucocorticoid with PKA or PKC pathway for the regulation of proENK mRNA expression appears to be mediated by other pathways rather than CREB and AP-1 families.

Brain Res. Mol. Brain Res. 84:41-51(2000) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again