Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p.

Uemura S., Kihara A., Inokuchi J., Igarashi Y.

Csg1p and Csg2p have been shown to be involved in the synthesis of mannosylinositol phosphorylceramide (MIPC) from inositol phosphorylceramide. YBR161w, termed CSH1 here, encodes a protein that exhibits a strong similarity to Csg1p. To examine whether Csh1p also functions in MIPC synthesis, we performed a [3H]dihydrosphingosine labeling experiment. Deltacsg1 cells exhibited only a reduction in the synthesis of mannosylated sphingolipids compared with wild-type cells, whereas the Deltacsg1 Deltacsh1 double deletion mutant exhibited a total loss. These results indicated that Csg1p and Csh1p have redundant functions in MIPC synthesis. Analyses using Deltacsg1 and Deltacsh1 cells in the Deltaipt1, Deltasur2, or Deltascs7 genetic background demonstrated that Csh1p has a different substrate specificity from Csg1p. We also revealed that Csg2p interacts with both Csg1p and Csh1p. Deletion of the CSG2 gene reduced the Csg1p activity and abolished the Csh1p activity. These results suggested that two distinct inositol phosphorylceramide mannosyltransferase complexes, Csg1p-Csg2p and Csh1p-Csg2p, exist.

J. Biol. Chem. 278:45049-45055(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again