Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization.

Fujita N., Sato S., Tsuruo T.

The cyclin-dependent kinase inhibitor p27Kip1 plays an important role in cell cycle regulation. The cyclin-dependent kinase-inhibitory activity of p27Kip1 is regulated by changes in its concentration and its subcellular localization. Several reports suggest that phosphorylation of p27Kip1 at serine 10, threonine 157, and threonine 187 regulate its localization. We have previously identified that carboxyl-terminal threonine 198 (Thr198) in p27Kip1 is a novel phosphorylation site and that Akt is associated with the phosphorylation at the site (Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) J. Biol. Chem. 277, 28706-28713). We show herein that activation of the Ras/Raf/mitogen-activated protein kinase kinase (MAPK kinase/MEK) pathway also regulates phosphorylation of p27Kip1 at Thr198. MAPKs were not directly associated with p27Kip1 phosphorylation at Thr198, but the p90 ribosomal protein S6 kinases (RSKs) could bind to and directly phosphorylate p27Kip1 at Thr198 in a Ras/Raf/MEK-dependent manner. RSK-dependent phosphorylation promoted the p27Kip1 binding to 14-3-3 and its cytoplasmic localization. To prove the direct relationship between 14-3-3 binding and cytoplasmic localization, we constructed a p27Kip1-R18 fusion protein in which the R18 peptide was fused to the carboxyl-terminal region of p27Kip1. The R18 peptide is known to interact with 14-3-3 independent of phosphorylation. The p27Kip1-R18 distributed mainly in the cytosol, whereas mutant p27Kip1-R18 (p27Kip1-R18-K2) that had no 14-3-3 binding capability existed mainly in the nucleus. These results indicate that RSKs play a crucial role in cell cycle progression through translocation of p27Kip1, in addition to Akt, to the cytoplasm in a phosphorylation and 14-3-3 binding-dependent manner.

J. Biol. Chem. 278:49254-49260(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again