Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Interaction of reelin signaling and Lis1 in brain development.

Assadi A.H., Zhang G., Beffert U., McNeil R.S., Renfro A.L., Niu S., Quattrocchi C.C., Antalffy B.A., Sheldon M., Armstrong D.D., Wynshaw-Boris A., Herz J., D'Arcangelo G., Clark G.D.

Loss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1(+/-) mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal. Reln encodes an extracellular protein that regulates layer formation by interacting with VLDLR and ApoER2 (Lrp8) receptors, thereby phosphorylating the Dab1 signaling molecule. Lis1 associates with microtubules and modulates neuronal migration. We investigated interactions between the reelin signaling pathway and Lis1 in brain development. Compound mutant mice with disruptions in the Reln pathway and heterozygous Pafah1b1 mutations had a higher incidence of hydrocephalus and enhanced cortical and hippocampal layering defects. Dab1 and Lis1 bound in a reelin-induced phosphorylation-dependent manner. These data indicate genetic and biochemical interaction between the reelin signaling pathway and Lis1.

Nat. Genet. 35:270-276(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again