Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta.

Greene M.W., Morrice N., Garofalo R.S., Roth R.A.

Non-esterified fatty acid (free fatty acid)-induced activation of the novel PKC (protein kinase C) isoenzymes PKCdelta and PKCtheta correlates with insulin resistance, including decreased insulin-stimulated IRS-1 (insulin receptor substrate-1) tyrosine phosphorylation and phosphoinositide 3-kinase activation, although the mechanism(s) for this resistance is not known. In the present study, we have explored the possibility of a novel PKC, PKCdelta, to modulate directly the ability of the insulin receptor kinase to tyrosine-phosphorylate IRS-1. We have found that expression of either constitutively active PKCdelta or wild-type PKCdelta followed by phorbol ester activation both inhibit insulin-stimulated IRS-1 tyrosine phosphorylation in vivo. Activated PKCdelta was also found to inhibit the IRS-1 tyrosine phosphorylation in vitro by purified insulin receptor using recombinant full-length human IRS-1 and a partial IRS-1-glutathione S-transferase-fusion protein as substrates. This inhibition in vitro was not observed with a non-IRS-1 substrate, indicating that it was not the result of a general decrease in the intrinsic kinase activity of the receptor. Consistent with the hypothesis that PKCdelta acts directly on IRS-1, we show that IRS-1 can be phosphorylated by PKCdelta on at least 18 sites. The importance of three of the PKCdelta phosphorylation sites in IRS-1 was shown in vitro by a 75-80% decrease in the incorporation of phosphate into an IRS-1 triple mutant in which Ser-307, Ser-323 and Ser-574 were replaced by Ala. More importantly, the mutation of these three sites completely abrogated the inhibitory effect of PKCdelta on IRS-1 tyrosine phosphorylation in vitro. These results indicate that PKCdelta modulates the ability of the insulin receptor to tyrosine-phosphorylate IRS-1 by direct phosphorylation of the IRS-1 molecule.

Biochem. J. 378:105-116(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again