Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease.

Dalfo E., Barrachina M., Rosa J.L., Ambrosio S., Ferrer I.

The present study examines alpha-synuclein interactions with rab3a and rabphilin by antibody arrays, immunoprecipitation and pull-down methods in the entorhinal cortex of control cases and in diffuse Lewy body disease (LBD) cases. Alpha-synuclein immunoprecipitation revealed alpha-synuclein binding to rabphilin in control but not in LB cases. Immunoprecipitation with rab3a disclosed rab3a binding to rabphilin in control but not in LB cases. Moreover, rab3a interacted with high molecular weight (66 kDa) alpha-synuclein only in LB cases, in agreement with parallel studies using antibody arrays. Results were compared with pull-down assays using His(6)/Flag-tagged rab3, rab5 and rab8, and anti-Flag immunoblotting. Weak bands of 17 kDa, corresponding to alpha-synuclein, were obtained in LB and, less intensely, in control cases. In addition, alpha-synuclein-immunoreactive bands of high molecular weight (36 kDa) were seen only in LB cases after pull-down assays with rab3a, rab5 or rab8. These findings corroborate previous observations showing rab3a-rabphilin interactions in control brains, and add substantial information regarding decreased binding of rab3a to rabphilin and increased binding of rab3a to alpha-synuclein aggregates in LB cases. Since, alpha-synuclein, rab3a and rabphilin participate in the docking and fusion of synaptic vesicles, it can be suggested that exocytosis of neurotransmitters may be impaired in LB diseases.

Neurobiol. Dis. 16:92-97(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again