Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair.

Toueille M., El-Andaloussi N., Frouin I., Freire R., Funk D., Shevelev I., Friedrich-Heineken E., Villani G., Hottiger M.O., Huebscher U.

In eukaryotic cells, checkpoints are activated in response to DNA damage. This requires the action of DNA damage sensors such as the Rad family proteins. The three human proteins Rad9, Rad1 and Hus1 form a heterotrimeric complex (called the 9-1-1 complex) that is recruited onto DNA upon damage. DNA damage also triggers the recruitment of DNA repair proteins at the lesion, including specialized DNA polymerases. In this work, we showed that the 9-1-1 complex can physically interact with DNA polymerase beta in vitro. Functional analysis revealed that the 9-1-1 complex had a stimulatory effect on DNA polymerase beta activity. However, the presence of 9-1-1 complex neither affected DNA polymerase lambda, another X family DNA polymerase, nor the two replicative DNA polymerases alpha and delta. DNA polymerase beta stimulation resulted from an increase in its affinity for the primer-template and the interaction with the 9-1-1 complex stimulated deoxyribonucleotides misincorporation by DNA polymerase beta. In addition, the 9-1-1 complex enhanced DNA strand displacement synthesis by DNA polymerase beta on a 1 nt gap DNA substrate. Our data raise the possibility that the 9-1-1 complex might attract DNA polymerase beta to DNA damage sites, thus connecting directly checkpoints and DNA repair.

Nucleic Acids Res. 32:3316-3324(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again