Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Structure and RNA interactions of the N-terminal RRM domains of PTB.

Simpson P.J., Monie T.P., Szendroei A., Davydova N., Tyzack J.K., Conte M.R., Read C.M., Cary P.D., Svergun D.I., Konarev P.V., Curry S., Matthews S.

The polypyrimidine tract binding protein (PTB) is an important regulator of alternative splicing that also affects mRNA localization, stabilization, polyadenylation, and translation. NMR structural analysis of the N-terminal half of PTB (residues 55-301) shows a canonical structure for RRM1 but reveals novel extensions to the beta strands and C terminus of RRM2 that significantly modify the beta sheet RNA binding surface. Although PTB contains four RNA recognition motifs (RRMs), it is widely held that only RRMs 3 and 4 are involved in RNA binding and that RRM2 mediates homodimerization. However, we show here not only that the RRMs 1 and 2 contribute substantially to RNA binding but also that full-length PTB is monomeric, with an elongated structure determined by X-ray solution scattering that is consistent with a linear arrangement of the constituent RRMs. These new insights into the structure and RNA binding properties of PTB suggest revised models of its mechanism of action.

Structure 12:1631-1643(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again