RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/17113391http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/17113391http://www.w3.org/2000/01/rdf-schema#comment"In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.org/dc/terms/identifier"doi:10.1016/j.cub.2006.09.065"xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Fodde R."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Smits R."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Galjart N."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Akhmanova A."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"van Ham M."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Grosveld F."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Stepanova T."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Drabek K."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Sayas C.L."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"van Horssen R."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Draegestein K."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/author"Ten Hagen T."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/date"2006"xsd:gYear
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/name"Curr Biol"xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/pages"2259-2264"xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/title"Role of CLASP2 in microtubule stabilization and the regulation of persistent motility."xsd:string
http://purl.uniprot.org/citations/17113391http://purl.uniprot.org/core/volume"16"xsd:string
http://purl.uniprot.org/citations/17113391http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/17113391
http://purl.uniprot.org/citations/17113391http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/17113391
http://purl.uniprot.org/uniprot/O75122#attribution-70DCD54D42C3AE0C2E4AE2F7281E6846http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/17113391
http://purl.uniprot.org/uniprot/Q7Z460#attribution-70DCD54D42C3AE0C2E4AE2F7281E6846http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/17113391
http://purl.uniprot.org/uniprot/Q8BRT1#attribution-6BC0B08B0A20C87545C52E8F03FF12A8http://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/17113391