Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein beta gamma dimer complexes.

Hippe H.J., Luedde M., Lutz S., Koehler H., Eschenhagen T., Frey N., Katus H.A., Wieland T., Niroomand F.

Heterotrimeric G proteins are pivotal regulators of myocardial contractility. In addition to the receptor-induced GDP/GTP exchange, G protein alpha subunits can be activated by a phosphate transfer via a plasma membrane-associated complex of nucleoside diphosphate kinase B (NDPK B) and G protein betagamma-dimers (Gbetagamma). To investigate the physiological role of this phosphate transfer in cardiomyocytes, we generated a Gbeta1gamma2-dimer carrying a single amino acid exchange at the intermediately phosphorylated His-266 in the beta1 subunit (Gbeta1H266Lgamma2). Recombinantly expressed Gbeta1H266Lgamma2 were integrated into heterotrimeric G proteins in rat cardiomyocytes but were deficient in intermediate Gbeta phosphorylation. Compared with wild-type Gbeta1gamma2 (Gbeta1WTgamma2), overexpression of Gbeta1H266Lgamma2 suppressed basal cAMP formation up to 55%. A similar decrease in basal cAMP production occurred when the formation of NDPK B/Gbetagamma complexes was attenuated by siRNA-mediated NDPK B knockdown. In adult rat cardiomyocytes expressing Gbeta1H266Lgamma2, the basal contractility was suppressed by approximately 50% which correlated to similarly reduced basal cAMP levels and reduced Ser16-phosphorylation of phospholamban. In the presence of the beta-adrenoceptor agonist isoproterenol, the total cAMP formation and contractility were significantly lower in Gbeta1H266Lgamma2 than in Gbeta1WTgamma2 expressing cardiomyocytes. However, the relative isoproterenol-induced increased was not affected by Gbeta1H266Lgamma2. We conclude that the receptor-independent activation of G proteins via NDPK B/Gbetagamma complexes requires the intermediate phosphorylation of G protein beta subunits at His-266. Our results highlight the histidine kinase activity of NDPK B for Gbeta and demonstrate its contribution to the receptor-independent regulation of cAMP synthesis and contractility in intact cardiomyocytes.

Circ. Res. 100:1191-1199(2007) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again