Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein.

Parkyn C.J., Vermeulen E.G., Mootoosamy R.C., Sunyach C., Jacobsen C., Oxvig C., Moestrup S., Liu Q., Bu G., Jen A., Morris R.J.

The trafficking of normal cellular prion protein (PrPC) is believed to control its conversion to the altered conformation (designated PrPSc) associated with prion disease. Although anchored to the membrane by means of glycosylphosphatidylinositol (GPI), PrPC on neurons is rapidly and constitutively endocytosed by means of coated pits, a property dependent upon basic amino acids at its N-terminus. Here, we show that low-density lipoprotein receptor-related protein 1 (LRP1), which binds to multiple ligands through basic motifs, associates with PrPC during its endocytosis and is functionally required for this process. Moreover, sustained inhibition of LRP1 levels by siRNA leads to the accumulation of PrPC in biosynthetic compartments, with a concomitant lowering of surface PrPC, suggesting that LRP1 expedites the trafficking of PrPC to the neuronal surface. PrPC and LRP1 can be co-immunoprecipitated from the endoplasmic reticulum in normal neurons. The N-terminal domain of PrPC binds to purified human LRP1 with nanomolar affinity, even in the presence of 1 muM of the LRP-specific chaperone, receptor-associated protein (RAP). Taken together, these data argue that LRP1 controls both the surface, and biosynthetic, trafficking of PrPC in neurons.

J. Cell. Sci. 121:773-783(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again