Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

MSH2 missense mutations and HNPCC syndrome: pathogenicity assessment in a human expression system.

Belvederesi L., Bianchi F., Galizia E., Loretelli C., Bracci R., Catalani R., Amati M., Cellerino R.

Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is associated with germline mutations in one of several MisMatch Repair (MMR) genes. An increasing proportion (20-25%) of the reported MSH2 variants consists of single amino-acid substitution with uncertain disease-causing significance. The present study was undertaken to functionally characterize 3 MSH2 nontruncating variants: p.Gly162Arg (c.484G>C), p.Asp167His (c.499G>C) and p.Arg359Ser (c.1077A>T). Missense alterations, were assessed in a human system for expression/stability and for the ability to heterodimerize with MSH6 and correctly localize into the nucleus. Functional assays results were correlated with clinical and genetic features indicative of HNPCC as MicroSatellite-Instability (MSI), abnormalities of MMR gene expression in tumour tissue (IHC) and familial history. p.Gly162Arg and p.Arg359Ser variants showed a clearly decreased expression level of the MutSá complex and were associated with an abnormal subcellular localization pattern, which can be suggestive of an incorrect MSH2/MSH6 heterodimerization. Functional analysis results were supported by MSI and IHC data and by familial cancer history. The subcellular localization assay, performed in a human expression system, classifies as pathogenetic two MSH2 nontruncating alterations providing a useful tool in genetic testing programs.

Hum. Mutat. 29:E296-E309(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again