Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Effects of postnatal exposure to methylmercury on spatial learning and memory and brain NMDA receptor mRNA expression in rats.

Liu W., Wang X., Zhang R., Zhou Y.

The extreme vulnerability of developing nervous system to methylmercury (MeHg) is well documented. Still unclear is the consequence of different postnatal period exposure to MeHg. We investigated the critical postnatal phase when MeHg induced neurotoxicity in rats and the underlying mechanism. Rats were given 5mg/(kg day) methylmercury chloride (MMC) orally on postnatal day (PND) 7, PND14, PND28, and PND60 for consecutive 7 days. A control group was treated with 0.9% sodium chloride solution 5 ml/(kg day) instead. On PND69, spatial learning and memory was evaluated by Morris water maze test. Behavior deficits were found in MMC-treated rats of PND7 and PND14 groups (p<0.01). N-methyl-D-aspartate (NMDA) receptor 2 subunits mRNA expressions were evaluated 3 days after the last administration. In hippocampus, the mRNA expression of NR2A and NR2B decreased, but the NR2C expression increased in PND14 group following MMC-treatment (p<0.01). In cerebral cortex, mRNA expression of NR2A decreased, with NR2C expression elevating in PND14 group following MMC-treatment (p<0.05). These observations suggest that the postnatal exposure to MeHg during PND7-20 could cause neurobehavioral deficits which extend to adulthood. Furthermore, the abnormal expression of NMDAR 2 subunits might associate with the impairment.

Toxicol. Lett. 188:230-235(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again