Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

p53-Dependent transcriptional control of cellular prion by presenilins.

Vincent B., Sunyach C., Orzechowski H.D., St George-Hyslop P., Checler F.

The presenilin-dependent gamma-secretase processing of the beta-amyloid precursor protein (betaAPP) conditions the length of the amyloid beta peptides (Abeta) that accumulate in the senile plaques of Alzheimer's disease-affected brains. This, together with an additional presenilin-mediated epsilon-secretase cleavage, generates intracellular betaAPP-derived fragments named amyloid intracellular domains (AICDs) that regulate the transcription of several genes. We establish that presenilins control the transcription of cellular prion protein (PrP(c)) by a gamma-secretase inhibitor-sensitive and AICD-mediated process. We demonstrate that AICD-dependent control of PrP(c) involves the tumor suppressor p53. Thus, p53-deficiency abolishes the AICD-mediated control of PrP(c) transcription. Furthermore, we show that p53 directly binds to the PrP(c) promoter and increases its transactivation. Overall, our study unravels a transcriptional regulation of PrP(c) by the oncogene p53 that is directly driven by presenilin-dependent formation of AICD. Furthermore, it adds support to previous reports linking secretase activities involved in betaAPP metabolism to the physiology of PrP(c).

J. Neurosci. 29:6752-6760(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again