Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway.

Gao D., Wang R., Li B., Yang Y., Zhai Z., Chen D.Y.

Toll-like receptors (TLRs) act as sensors of microbial components and elicit innate immune responses. All TLR signaling pathways activate the nuclear factor-kappaB (NF-kappaB), which controls the expression of inflammatory cytokine genes. Transforming growth factor-beta-activated kinase 1 (TAK1) is a serine/threonine protein kinase that is critically involved in the activation of NF-kappaB by tumor necrosis factor (TNFalpha), interleukin-1beta (IL-1beta) and TLR ligands. In this study, we identified a novel protein, WD40 domain repeat protein 34 (WDR34) as a TAK1-interacting protein in yeast two-hybrid screens. WDR34 interacted with TAK1, TAK1-binding protein 2 (TAB2), TAK1-binding protein 3 (TAB3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in overexpression and under physiological conditions. Overexpression of WDR34 inhibited IL-1beta-, polyI:C- and lipopolysaccharide (LPS)-induced but not TNFalpha-induced NF-kappaB activation, whereas knockdown of WDR34 by a RNA-interference construct potentiated NF-kappaB activation by these ligands. Our findings suggest that WDR34 is a TAK1-associated inhibitor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway.

Cell. Mol. Life Sci. 66:2573-2584(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again