Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

MIP-T3 is a negative regulator of innate type I IFN response.

Ng M.H., Ho T.H., Kok K.H., Siu K.L., Li J., Jin D.Y.

TNFR-associated factor (TRAF) 3 is an important adaptor that transmits upstream activation signals to protein kinases that phosphorylate transcription factors to induce the production of type I IFNs, the important effectors in innate antiviral immune response. MIP-T3 interacts specifically with TRAF3, but its function in innate IFN response remains unclear. In this study, we demonstrated a negative regulatory role of MIP-T3 in type I IFN production. Overexpression of MIP-T3 inhibited RIG-I-, MDA5-, VISA-, TBK1-, and IKKε-induced transcriptional activity mediated by IFN-stimulated response elements and IFN-β promoter. MIP-T3 interacted with TRAF3 and perturbed in a dose-dependent manner the formation of functional complexes of TRAF3 with VISA, TBK1, IKKε, and IFN regulatory factor 3. Consistent with this finding, retinoic acid-inducible gene I- and TBK1-induced phosphorylation of IFN regulatory factor 3 was significantly diminished when MIP-T3 was overexpressed. Depletion of MIP-T3 facilitated Sendai virus-induced activation of IFN production and attenuated the replication of vesicular stomatitis virus. In addition, MIP-T3 was found to be dissociated from TRAF3 during the course of Sendai virus infection. Our findings suggest that MIP-T3 functions as a negative regulator of innate IFN response by preventing TRAF3 from forming protein complexes with critical downstream transducers and effectors.

J. Immunol. 187:6473-6482(2011) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again