Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

SCF(Fbxo9) and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma.

Fernandez-Saiz V., Targosz B.S., Lemeer S., Eichner R., Langer C., Bullinger L., Reiter C., Slotta-Huspenina J., Schroeder S., Knorn A.M., Kurutz J., Peschel C., Pagano M., Kuster B., Bassermann F.

The Tel2 (also known as Telo2) and Tti1 proteins control the cellular abundance of mammalian PIKKs and are integral components of mTORC1 and mTORC2. Here we report that Tel2 and Tti1 are targeted for degradation within mTORC1 by the SCFFbxo9 ubiquitin ligase to adjust mTOR signalling to growth factor availability. This process is primed by CK2, which translocates to the cytoplasm to mediate mTORC1-specific phosphorylation of Tel2/Tti1, subsequent to growth factor deprivation. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation whereas relief of feedback inhibition activates the PI(3)K/TORC2/Akt pathway to sustain survival. Significantly, primary human multiple myelomas exhibit high levels of Fbxo9. In this setting, PI(3)K/TORC2/Akt signalling and survival of multiple myeloma cells is dependent on Fbxo9 expression. Thus, mTORC1-specific degradation of the Tel2 and Tti1 proteins represents a central mTOR regulatory mechanism with implications in multiple myeloma, both in promoting survival and in providing targets for the specific treatment of multiple myeloma with high levels of Fbxo9 expression.

Nat. Cell Biol. 15:72-81(2013) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again