RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23356641http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23356641http://www.w3.org/2000/01/rdf-schema#comment"The endoplasmic reticulum (ER) is an organelle that synthesizes many secretory and membrane proteins. However, proteins often fold incorrectly. Terminally misfolded polypeptides in the ER are retro-translocated to the cytosol, where they are ultimately degraded by the ubiquitin-proteasome system, a process termed ER-associated degradation (ERAD). By recognizing the specific structures of N-linked oligosaccharides attached to polypeptides, lectins play an important role in the quality control of glycoproteins in the ER. Mammalian OS-9 and XTP3-B are ER-resident lectins that contain mannose 6-phosphate receptor homology (MRH) domains, which recognize sugar moieties; OS-9 has one MRH domain and XTP3-B has two. Both are involved in ERAD, but the functional differences between the two are poorly understood. The present study analyzed the function of human XTP3-B, and found, by frontal affinity chromatography analysis, that its C-terminal MRH domain specifically recognized the Man9 GlcNAc2 (M9) glycan in vitro and M9 glycans on an ERAD substrate NHK, a terminally misfolded α1-antitrypsin variant, in vivo. Furthermore, endogenous XTP3-B was a component of the HRD1-SEL1L membrane-embedded ubiquitin ligase complex, an association that was stabilized by a direct interaction with SEL1L. The lectin activity of XTP3-B was required for its binding to NHK, but not for its association with SEL1L. Unlike OS-9, XTP3-B did not enhance the degradation of misfolded glycoproteins, but instead inhibited the degradation of NHK bearing M9 oligosaccharides. Therefore, we propose that XTP3-B recognizes M9 glycans on unfolded polypeptides, thereby acting as a negative regulator of ERAD, and also protects newly synthesized immature polypeptides from premature degradation."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.org/dc/terms/identifier"doi:10.1111/febs.12157"xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/author"Kato K."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/author"Kamiya Y."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/author"Nagata K."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/author"Fujimori T."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/author"Hosokawa N."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/name"FEBS J"xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/pages"1563-1575"xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/title"Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded alpha1-antitrypsin variant."xsd:string
http://purl.uniprot.org/citations/23356641http://purl.uniprot.org/core/volume"280"xsd:string
http://purl.uniprot.org/citations/23356641http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23356641
http://purl.uniprot.org/citations/23356641http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/23356641
http://purl.uniprot.org/uniprot/#_Q96DZ1-mappedCitation-23356641http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/23356641
http://purl.uniprot.org/uniprot/#_V9HWD3-mappedCitation-23356641http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/23356641
http://purl.uniprot.org/uniprot/Q96DZ1http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/23356641
http://purl.uniprot.org/uniprot/V9HWD3http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/23356641