Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Secretory defect and cytotoxicity: the potential disease mechanisms for the retinitis pigmentosa (RP)-associated interphotoreceptor retinoid-binding protein (IRBP).

Li S., Yang Z., Hu J., Gordon W.C., Bazan N.G., Haas A.L., Bok D., Jin M.

Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival and function. Recently, a D1080N mutation in IRBP was found in patients with retinitis pigmentosa, a frequent cause of retinal degeneration. The molecular and cellular bases for pathogenicity of the mutation are unknown. Here, we show that the mutation abolishes secretion of IRBP and results in formation of insoluble high molecular weight complexes via disulfide bonds. Co-expression of protein disulfide isomerase A2 that regulates disulfide bond formation or introduction of double Cys-to-Ala substitutions at positions 304 and 1175 in D1080N IRBP promoted secretion of the mutated IRBP. D1080N IRBP was not transported to the Golgi apparatus, but accumulated in the endoplasmic reticulum (ER), bound with the ER-resident chaperone proteins such as BiP, protein disulfide isomerase, and heat shock proteins. Splicing of X-box-binding protein-1 mRNA, expression of activating transcription factor 4 (ATF4), and cleavage of ATF6 were significantly increased in cells expressing D1080N IRBP. Moreover, D1080N IRBP induced up-regulation and nuclear translocation of the C/EBP homologous protein, a proapoptotic transcription factor associated with the unfolded protein response. These results indicate that loss of normal function (nonsecretion) and gain of cytotoxic function (ER stress) are involved in the disease mechanisms of D1080N IRBP. Chemical chaperones and low temperature, which help proper folding of many mutated proteins, significantly rescued secretion of D1080N IRBP, suggesting that misfolding is the molecular basis for pathogenicity of D1080N substitution and that chemical chaperones are therapeutic candidates for the mutation-caused blinding disease.

J. Biol. Chem. 288:11395-11406(2013) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again