RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23615711http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23615711http://www.w3.org/2000/01/rdf-schema#comment"Recently, cation transport regulator homolog 1 (Chac1) has been identified as a novel pro-apoptotic factor in cells under endoplasmic reticulum (ER) stress. Of the three major ER stress sensors, it is suggested that ATF4 participates in the transcriptional regulation of Chac1 gene expression. The precise characterization of the Chac1 promoter, however, has not yet been elucidated. In this study, we detected the induction of Chac1 mRNA expression using DNA array analysis and RT-PCR of thapsigargin (Tg)-inducible genes in Neuro2a cells. Chac1 mRNA expression was also induced immediately following treatment with tunicamycin (Tm) and brefeldin A. Characterization of the mouse Chac1 promoter activity using a luciferase reporter assay revealed that the CREB/ATF element and amino acid response element in the mouse Chac1 promoter are functional and respond to Tm stimulation and ATF4 overexpression. Mutations in either element in the Chac1 promoter did not inhibit the responsiveness of this promoter to Tm and ATF4; however, mutations in both of these elements dramatically decreased the basal activity and response to ER stress stimuli. In addition to the transcriptional regulation, we found that Chac1 protein expression was only detected in the presence of MG132, a proteasome inhibitor, even though mouse Chac1 gene was transiently overexpressed in Neuro2a cells. Taken together, we are the first to demonstrate the transcriptional and post-translational regulation of Chac1 expression in a neuronal cell line."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.org/dc/terms/identifier"doi:10.1007/s11010-013-1663-1"xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Koga H."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Nomura Y."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Shimada K."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Hirata Y."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Kiuchi K."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/author"Oh-Hashi K."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/name"Mol Cell Biochem"xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/pages"97-106"xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/title"Transcriptional and post-translational regulation of mouse cation transport regulator homolog 1."xsd:string
http://purl.uniprot.org/citations/23615711http://purl.uniprot.org/core/volume"380"xsd:string
http://purl.uniprot.org/citations/23615711http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23615711
http://purl.uniprot.org/citations/23615711http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/23615711
http://purl.uniprot.org/uniprot/#_Q8R3J5-mappedCitation-23615711http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/23615711
http://purl.uniprot.org/uniprot/Q8R3J5http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/23615711