RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/23969831http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23969831http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/23969831http://www.w3.org/2000/01/rdf-schema#comment"Hereditary spastic paraplegias are inherited neurological disorders characterized by progressive lower-limb spasticity and weakness. Although more than 50 genetic loci are known [spastic gait (SPG)1 to -57], over half of hereditary spastic paraplegia cases are caused by pathogenic mutations in four genes encoding proteins that function in tubular endoplasmic reticulum (ER) network formation: atlastin-1 (SPG3A), spastin (SPG4), reticulon 2 (SPG12), and receptor expression-enhancing protein 1 (SPG31). Here, we show that the SPG33 protein protrudin contains hydrophobic, intramembrane hairpin domains, interacts with tubular ER proteins, and functions in ER morphogenesis by regulating the sheet-to-tubule balance and possibly the density of tubule interconnections. Protrudin also interacts with KIF5 and harbors a Rab-binding domain, a noncanonical FYVE (Fab-1, YGL023, Vps27, and EEA1) domain, and a two phenylalanines in an acidic tract (FFAT) domain and, thus, may also function in the distribution of ER tubules via ER contacts with the plasma membrane or other organelles."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.org/dc/terms/identifier"doi:10.1073/pnas.1307391110"xsd:string
http://purl.uniprot.org/citations/23969831http://purl.org/dc/terms/identifier"doi:10.1073/pnas.1307391110"xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Chang J."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Chang J."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Lee S."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Lee S."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Blackstone C."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/author"Blackstone C."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/date"2013"xsd:gYear
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/pages"14954-14959"xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/pages"14954-14959"xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/title"Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/title"Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation."xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/volume"110"xsd:string
http://purl.uniprot.org/citations/23969831http://purl.uniprot.org/core/volume"110"xsd:string
http://purl.uniprot.org/citations/23969831http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23969831
http://purl.uniprot.org/citations/23969831http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/23969831
http://purl.uniprot.org/citations/23969831http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/23969831
http://purl.uniprot.org/citations/23969831http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/23969831