Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P53 and E2F-1 cooperate to mediate apoptosis.

Wu X., Levine A.J.

The tumor-suppressor protein p53 appears to function at the G1 phase of the cell cycle as a checkpoint in response to DNA damage. Mutations in the p53 gene lead to an increased rate of genomic instability and tumorigenesis. The E2F-1 transcription factor is a protein partner of the retinoblastoma-susceptibility gene product, RB. E2F-1 appears to function as a positive regulator or signal for entry into S phase. To explore possible interactions of p53 and E2F-1 in the cell cycle, a human E2F-1 expression plasmid was introduced into a murine cell line containing a temperature-sensitive p53 allele which produces a p53 protein in the wild-type conformation at 32 degrees C and the mutant form at 37.5 degrees C. Coexpression of the wild-type p53 protein and E2F-1 in these cells resulted in a rapid loss of cell viability through a process of apoptosis. Thus, the cell cycle utilizes an interacting or communicative pathway between RB-E2F-1 and p53.

Proc. Natl. Acad. Sci. U.S.A. 91:3602-3606(1994) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again