Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

nm23-H4, a new member of the family of human nm23/nucleoside diphosphate kinase genes localised on chromosome 16p13.

Milon L., Rousseau-Merck M.-F., Munier A., Erent M., Lascu I., Capeau J., Lacombe M.-L.

A novel human nm23/nucleoside diphosphate (NDP) kinase gene, called nm23-H4, was identified by screening a human stomach cDNA library with a probe generated by amplification by reverse transcription-polymerase chain reaction. The primers were designed from publicly available database cDNA sequences selected according to their homology to the human nn23-H1 putative metastasis suppressor gene. The full-length cDNA sequence predicts a 187 amino acid protein possessing the region homologous to NDP kinases with all residues crucial for nucleotide binding and catalysis, strongly suggesting that Nm23-H4 possesses NDP kinase activity. It shares 56, 55 and 60% identity with Nm23-H1, Nm23-H2 and DR-Nm23, respectively, the other human Nm23 proteins isolated so far. Compared with these proteins, Nm23-H4 contains an additional NH2-terminal region that is rich in positively charged residues and could indicate routing to mitochondria. The nm23-H4 gene has been localised to human chromosomal band 16p13.3. The corresponding 1.2 kb mRNA is widely distributed and expressed in a tissue-dependent manner, being found at very high levels in prostate, heart, liver, small intestine and skeletal muscle tissues and in low amounts in the brain and in blood leucocytes. Nm23-H4 naturally possesses the Pro-Ser substitution equivalent to the K-pn mutation (P97S) of Drosophila.

Hum. Genet. 99:550-557(1997) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again