RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/9632691http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/9632691http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/9632691http://www.w3.org/2000/01/rdf-schema#comment"14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.org/dc/terms/identifier"doi:10.1074/jbc.273.26.16305"xsd:string
http://purl.uniprot.org/citations/9632691http://purl.org/dc/terms/identifier"doi:10.1074/jbc.273.26.16305"xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Bankston L.A."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Bankston L.A."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Fu H."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Fu H."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Liddington R.C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Liddington R.C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Masters S.C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Masters S.C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Petosa C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Petosa C."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Pohl J."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Pohl J."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Wang B."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/author"Wang B."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/date"1998"xsd:gYear
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/date"1998"xsd:gYear
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/pages"16305-16310"xsd:string
http://purl.uniprot.org/citations/9632691http://purl.uniprot.org/core/pages"16305-16310"xsd:string