Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
1 to 14 of 14  Show

Literature citations Results

Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus.

De Leon D.D., Crutchlow M.F., Ham J.Y., Stoffers D.A.

Int. J. Biochem. Cell Biol. 38:845-859(2006) · Mapped (1)

Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy.

De Leon D.D., Deng S., Madani R., Ahima R.S., Drucker D.J., Stoffers D.A.

Diabetes 52:365-371(2003) · Mapped (4)

Resveratrol regulates insulin-like growth factor-II in breast cancer cells.

Vyas S., Asmerom Y., De Leon D.D.

Endocrinology 146:4224-4233(2005) · Mapped (4)

Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3.

Lee C.S., De Leon D.D., Kaestner K.H., Stoffers D.A.

Diabetes 55:269-272(2006) · Mapped (4)

Precursor IGF-II (proIGF-II) and mature IGF-II (mIGF-II) induce Bcl-2 And Bcl-X L expression through different signaling pathways in breast cancer cells.

Singh S.K., Moretta D., Almaguel F., De Leon M., De Leon D.D.

Growth Factors 26:92-103(2008) · Mapped (17)

Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A.

Stanescu D.E., Hughes N., Kaplan B., Stanley C.A., De Leon D.D.

J. Clin. Endocrinol. Metab. 97:E2026-2030(2012) · UniProtKB (1) · Mapped (27)

Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2.

Ferrara C.T., Boodhansingh K.E., Paradies E., Fiermonte G., Steinkrauss L.J., Topor L.S., Quintos J.B., Ganguly A., De Leon D.D., Palmieri F. et al.

J. Clin. Endocrinol. Metab. 102:942-949(2017) · Mapped (2)

Modulation of cathepsin D routing by IGF-II involves IGF-II binding to IGF-II/M6P receptor in MCF-7 breast cancer cells.

Faridi J.S., Mohan S., De Leon D.D.

Growth Factors 22:169-177(2004) · Mapped (30)

Functional and Metabolomic Consequences of KATP Channel Inactivation in Human Islets.

Li C., Ackermann A.M., Boodhansingh K.E., Bhatti T.R., Liu C., Schug J., Doliba N., Han B., Cosgrove K.E., Banerjee I. et al.

Diabetes 66:1901-1913(2017) · Mapped (13)

Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic beta-cells and inhibiting insulin secretion.

De Leon D.D., Li C., Delson M.I., Matschinsky F.M., Stanley C.A., Stoffers D.A.

J. Biol. Chem. 283:25786-25793(2008) · Mapped (16)

Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency.

Gibson C.E., Boodhansingh K.E., Li C., Conlin L., Chen P., Becker S.A., Bhatti T., Bamba V., Adzick N.S., De Leon D.D. et al.

Horm Res Paediatr 89:413-422(2018) · Mapped (17)

Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits.

Lin Y.W., Akrouh A., Hsu Y., Hughes N., Nichols C.G., De Leon D.D.

Channels (Austin) 6:133-138(2012) · Mapped (4)

Clinical heterogeneity of hyperinsulinism due to HNF1A and HNF4A mutations.

Tung J.Y., Boodhansingh K., Stanley C.A., De Leon D.D.

Pediatr Diabetes 19:910-916(2018) · Mapped (28)

A mutation in the TMD0-L0 region of sulfonylurea receptor-1 (L225P) causes permanent neonatal diabetes mellitus (PNDM).

Masia R., De Leon D.D., MacMullen C., McKnight H., Stanley C.A., Nichols C.G.

Diabetes 56:1357-1362(2007) · Mapped (4)

1 to 14 of 14  Show
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again