Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
1 to 25 of 201  Show

Literature citations Results

Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane.

Fleckenstein D., Rohde M., Klionsky D.J., Rudiger M.

J. Cell. Sci. 111:3109-3118(1998) · Mapped (1)

Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.

Wang C.-W., Stromhaug P.E., Kauffman E.J., Weisman L.S., Klionsky D.J.

J. Cell Biol. 163:973-985(2003) · UniProtKB (2) · Mapped (6)

Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion.

Reggiori F., Wang C.-W., Stromhaug P.E., Shintani T., Klionsky D.J.

J. Biol. Chem. 278:5009-5020(2003) · UniProtKB (5) · Mapped (4)

Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae.

Hutchins M.U., Klionsky D.J.

J. Biol. Chem. 276:20491-20498(2001) · UniProtKB (3)

V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase.

Tomashek J.J., Graham L.A., Hutchins M.U., Stevens T.H., Klionsky D.J.

J. Biol. Chem. 272:26787-26793(1997) · Mapped (2)

Ume6 transcription factor is part of a signaling cascade that regulates autophagy.

Bartholomew C.R., Suzuki T., Du Z., Backues S.K., Jin M., Lynch-Day M.A., Umekawa M., Kamath A., Zhao M., Xie Z. et al.

Proc. Natl. Acad. Sci. U.S.A. 109:11206-11210(2012) · UniProtKB (1) · Mapped (6)

Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae.

Mao K., Wang K., Zhao M., Xu T., Klionsky D.J.

J. Cell Biol. 193:755-767(2011) · UniProtKB (3) · Mapped (10)

Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.

Baba M., Osumi M., Scott S.V., Klionsky D.J., Ohsumi Y.

J. Cell Biol. 139:1687-1695(1997) · UniProtKB (1)

Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae.

Nazarko T.Y., Huang J., Nicaud J.M., Klionsky D.J., Sibirny A.A.

Autophagy 1:37-45(2005) · UniProtKB (1)

Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy.

Lynch-Day M.A., Bhandari D., Menon S., Huang J., Cai H., Bartholomew C.R., Brumell J.H., Ferro-Novick S., Klionsky D.J.

Proc. Natl. Acad. Sci. U.S.A. 107:7811-7816(2010) · UniProtKB (8)

Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation.

Teter S.A., Klionsky D.J.

Semin. Cell Dev. Biol. 11:173-179(2000) · Mapped (10)

Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway.

Kim J., Scott S.V., Oda M.N., Klionsky D.J.

J. Cell Biol. 137:609-618(1997) · UniProtKB (1)

Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation.

Jin M., Klionsky D.J.

Autophagy 10:1681-1682(2014) · Mapped (9)

Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation.

Jin M., He D., Backues S.K., Freeberg M.A., Liu X., Kim J.K., Klionsky D.J.

Curr. Biol. 24:1314-1322(2014) · Mapped (4)

The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression.

Delorme-Axford E., Guimaraes R.S., Reggiori F., Klionsky D.J.

Methods 75:3-12(2015) · Mapped (1)

The yeast F1-ATPase beta subunit precursor contains functionally redundant mitochondrial protein import information.

Bedwell D.M., Klionsky D.J., Emr S.D.

Mol. Cell. Biol. 7:4038-4047(1987) · Mapped (1)

The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size.

Backues S.K., Lynch-Day M.A., Klionsky D.J.

Autophagy 8:1835-1836(2012) · Mapped (9)

The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting.

Huang J., Reggiori F., Klionsky D.J.

Mol. Biol. Cell 18:2511-2524(2007) · Mapped (1)

The transcription factor Spt4-Spt5 complex regulates the expression of ATG8 and ATG41.

Wen X., Gatica D., Yin Z., Hu Z., Dengjel J., Klionsky D.J.

Autophagy 2019:1-14(2019)

The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy.

Mao K., Wang K., Liu X., Klionsky D.J.

Dev. Cell 26:9-18(2013) · Mapped (6)

The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae.

Budovskaya Y.V., Stephan J.S., Reggiori F., Klionsky D.J., Herman P.K.

J. Biol. Chem. 279:20663-20671(2004) · Mapped (6)

The progression of peroxisomal degradation through autophagy requires peroxisomal division.

Mao K., Liu X., Feng Y., Klionsky D.J.

Autophagy 10:652-661(2014) · Mapped (2)

The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy.

Gatica D., Hu G., Liu X., Zhang N., Williamson P.R., Klionsky D.J.

Mol. Cell 73:314-324.e4(2019) · Mapped (1)

The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy.

Zheng L., Shu W.J., Li Y.M., Mari M., Yan C., Wang D., Yin Z.H., Jiang W., Zhou Y., Okamoto K. et al.

Autophagy 2019:1-14(2019)

The molecular mechanism of mitochondria autophagy in yeast.

Kanki T., Klionsky D.J.

Mol. Microbiol. 75:795-800(2010) · Mapped (30)

1 to 25 of 201  Show
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again