Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 70 (13 Nov 2019)
Sequence version 1 (21 Dec 2004)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

E3 ubiquitin-protein ligase RNF146

Gene

RNF146

Organism
Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

E3 ubiquitin-protein ligase that specifically binds poly-ADP-ribosylated (PARsylated) proteins and mediates their ubiquitination and subsequent degradation. May regulate many important biological processes, such as cell survival and DNA damage response. Acts as an activator of the Wnt signaling pathway by mediating the ubiquitination of PARsylated AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex. Acts in cooperation with tankyrase proteins (TNKS and TNKS2), which mediate PARsylation of target proteins AXIN1, AXIN2, BLZF1, CASC3, TNKS and TNKS2. Recognizes and binds tankyrase-dependent PARsylated proteins via its WWE domain and mediates their ubiquitination. May regulate TNKS and TNKS2 subcellular location, preventing aggregation at a centrosomal location. Neuroprotective protein. Protects the brain against N-methyl-D-aspartate (NMDA) receptor-mediated glutamate excitotoxicity and ischemia, by interfering with PAR-induced cell death, called parthanatos. Prevents nuclear translocation of AIFM1 in a PAR-binding dependent manner. Does not affect PARP1 activation. Protects against cell death induced by DNA damaging agents, such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest. Promotes cell survival after gamma-irradiation. Facilitates DNA repair. Neuroprotective protein. Protects the brain against N-methyl-D-aspartate (NMDA) receptor-mediated glutamate excitotoxicity and ischemia, by interfering with PAR-induced cell death, called parthanatos. Prevents nuclear translocation of AIFM1 in a PAR-binding dependent manner. Does not affect PARP1 activation (By similarity).By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N(6)-ubiquitinyl-[acceptor protein]-L-lysine. EC:2.3.2.27

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: protein ubiquitination

This protein is involved in the pathway protein ubiquitination, which is part of Protein modification.
View all proteins of this organism that are known to be involved in the pathway protein ubiquitination and in Protein modification.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei107iso-ADP-ribose adenine ring groupBy similarity1
Binding sitei110iso-ADP-ribose 5'-phosphate groupBy similarity1
Binding sitei114iso-ADP-ribose 5'-phosphate groupBy similarity1
Binding sitei144iso-ADP-ribose 1'-phosphate groupBy similarity1
Binding sitei153iso-ADP-ribose adenine ring groupBy similarity1
Binding sitei163iso-ADP-ribose 1'-phosphate groupBy similarity1
Binding sitei175iso-ADP-ribose 5'-phosphate groupBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section specifies the position(s) and type(s) of zinc fingers within the protein.<p><a href='/help/zn_fing' target='_top'>More...</a></p>Zinc fingeri36 – 74RING-typePROSITE-ProRule annotationAdd BLAST39

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionTransferase
Biological processUbl conjugation pathway, Wnt signaling pathway
LigandMetal-binding, Zinc

Enzyme and pathway databases

UniPathway: a resource for the exploration and annotation of metabolic pathways

More...
UniPathwayi
UPA00143

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
E3 ubiquitin-protein ligase RNF146 (EC:2.3.2.27)
Alternative name(s):
Iduna
RING finger protein 146
RING-type E3 ubiquitin transferase RNF146Curated
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:RNF146
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9601 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaePongo
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001595 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000561091 – 358E3 ubiquitin-protein ligase RNF146Add BLAST358

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki84Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Cross-linki94Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Cross-linki130Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Cross-linki175Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei289PhosphoserineBy similarity1
Modified residuei293PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Ubiquitinated; autoubiquitinated. Autoubiquitination is enhanced upon poly(ADP-ribose)-binding (By similarity).By similarity

Keywords - PTMi

Isopeptide bond, Phosphoprotein, Ubl conjugation

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Can form homooligomers.

Interacts with PARsylated AXIN1, AXIN2, BLZF1, CASC3, H1-2, IPO7, LIG3, NCL, PARP1, XRCC1, XRCC5 and XRCC6.

Interacts with DDB1, DHX15, IQGAP1, LRPPRC, PARP2, PRKDC, RUVBL2, TNKS1 and TNKS2. Binding often leads to interactor ubiquitination, in the presence of the appropriate E1 and E2 enzymes, and proteasomal degradation (By similarity).

By similarity

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
9601.ENSPPYP00000019028

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q5REL3

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini91 – 167WWEPROSITE-ProRule annotationAdd BLAST77

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The WWE domain mediates non-covalent poly(ADP-ribose)-binding.By similarity

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri36 – 74RING-typePROSITE-ProRule annotationAdd BLAST39

Keywords - Domaini

Zinc-finger

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0824 Eukaryota
ENOG410ZTFC LUCA

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q5REL3

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.30.40.10, 1 hit
3.30.720.50, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR033509 RNF146
IPR004170 WWE-dom
IPR018123 WWE-dom_subgr
IPR037197 WWE_dom_sf
IPR001841 Znf_RING
IPR013083 Znf_RING/FYVE/PHD
IPR017907 Znf_RING_CS

The PANTHER Classification System

More...
PANTHERi
PTHR13417:SF2 PTHR13417:SF2, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF02825 WWE, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00184 RING, 1 hit
SM00678 WWE, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF117839 SSF117839, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS50918 WWE, 1 hit
PS00518 ZF_RING_1, 1 hit
PS50089 ZF_RING_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q5REL3-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MAGCGEIDHS INMLPTNRKA NESCSNTAPS LTVPECAICL QTCVHPVSLP
60 70 80 90 100
CKHVFCYLCV KGASWLGKRC ALCRQEIPED FLDKPTLLSP EELKAASRGN
110 120 130 140 150
GEYAWYYEGR NGWWQYGERT SRELEDAFSK GKKNTEMLIA GFLYVADLEN
160 170 180 190 200
MVQYRRNEHG RRRKIKRDII DIPKKGVAGL RLDCDANTVN LARESSADGA
210 220 230 240 250
DSVSAQSGAS VQPLVSSVRP LTSVDGQLTS PATPSPDAST SLEDSFAHLQ
260 270 280 290 300
LSGDNTAERS HRGEGEEDHE SPSSGRVPAP DTSIEETESD ASSDSEDVSA
310 320 330 340 350
VVAQHSLTQQ RLLVSNANQT VPDRSDRSGT DRSVAGGGTV SVSVRSRRPD

GQCTVTEV
Length:358
Mass (Da):38,761
Last modified:December 21, 2004 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i446A3F76BFE0B93D
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
CR857511 mRNA Translation: CAH89794.1

NCBI Reference Sequences

More...
RefSeqi
NP_001128751.1, NM_001135279.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
100189646

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
CR857511 mRNA Translation: CAH89794.1
RefSeqiNP_001128751.1, NM_001135279.1

3D structure databases

SMRiQ5REL3
ModBaseiSearch...

Protein-protein interaction databases

STRINGi9601.ENSPPYP00000019028

Genome annotation databases

GeneIDi100189646

Phylogenomic databases

eggNOGiKOG0824 Eukaryota
ENOG410ZTFC LUCA
InParanoidiQ5REL3

Enzyme and pathway databases

UniPathwayiUPA00143

Family and domain databases

Gene3Di3.30.40.10, 1 hit
3.30.720.50, 1 hit
InterProiView protein in InterPro
IPR033509 RNF146
IPR004170 WWE-dom
IPR018123 WWE-dom_subgr
IPR037197 WWE_dom_sf
IPR001841 Znf_RING
IPR013083 Znf_RING/FYVE/PHD
IPR017907 Znf_RING_CS
PANTHERiPTHR13417:SF2 PTHR13417:SF2, 1 hit
PfamiView protein in Pfam
PF02825 WWE, 1 hit
SMARTiView protein in SMART
SM00184 RING, 1 hit
SM00678 WWE, 1 hit
SUPFAMiSSF117839 SSF117839, 1 hit
PROSITEiView protein in PROSITE
PS50918 WWE, 1 hit
PS00518 ZF_RING_1, 1 hit
PS50089 ZF_RING_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiRN146_PONAB
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q5REL3
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: March 1, 2005
Last sequence update: December 21, 2004
Last modified: November 13, 2019
This is version 70 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. PATHWAY comments
    Index of metabolic and biosynthesis pathways
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again