RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/10209280http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/10209280http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/10209280http://www.w3.org/2000/01/rdf-schema#comment"Cathepsin D was purified to homogeneity from the liver of Antarctic icefish by anion-exchange chromatography followed by affinity chromatography on concanavalin-A Sepharose. The purified enzyme showed a molecular mass of 40 kDa and displayed optimal activity at pH 3.0 with a synthetic chromogenic substrate. The N-terminal sequence of this proteinase was determined by automated Edman degradation and was used to design a primer for use in reverse-transcriptase polymerase chain reaction. The open reading frame of the cloned cDNA encoded an aspartic proteinase, which contained the experimentally determined N-terminal sequence. The predicted sequence (396 residues) had a high similarity with those of cathepsin D from various vertebrate sources, but was considerably different from that of nothepsin, a distinct aspartic proteinase described previously from Antarctic fish [1]. Determination of kinetic parameters for substrate hydrolysis showed that, at temperatures between 8 and 50 degrees C, the icefish cathepsin D had a higher specificity constant (kcat/Km) than human cathepsin D. The stability of both enzymes was measured at 50 degrees C and half-lives of 55 and 3 min were derived for icefish and human cathepsin D, respectively."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.org/dc/terms/identifier"doi:10.1016/s0167-4838(99)00039-4"xsd:string
http://purl.uniprot.org/citations/10209280http://purl.org/dc/terms/identifier"doi:10.1016/s0167-4838(99)00039-4"xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Kille P."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Kille P."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Kay J."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Kay J."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Lees W.E."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Lees W.E."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Capasso A."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Capasso A."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Capasso C."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Capasso C."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Carginale V."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Carginale V."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Parisi E."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Parisi E."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Scudiero R."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/author"Scudiero R."xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/date"1999"xsd:gYear
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/date"1999"xsd:gYear
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string
http://purl.uniprot.org/citations/10209280http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string