RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/10358015http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/10358015http://www.w3.org/2000/01/rdf-schema#comment"In vertebrates, synapsins constitute a family of synaptic vesicle proteins encoded by three genes. Synapsins contain a central ATP-binding domain, the C-domain, that is highly homologous between synapsins and evolutionarily conserved in invertebrates. The crystal structure of the C-domain from synapsin I revealed that it constitutes a large (>300 amino acids), independently folded domain that forms a tight dimer with or without bound ATP. We now show that the C-domains of all synapsins form homodimers, and that in addition, C-domains from different synapsins associate into heterodimers. This conclusion is based on four findings: 1) in yeast two-hybrid screens with full-length synapsin IIa as a bait, the most frequently isolated prey cDNAs encoded the C-domain of synapsins; 2) quantitative yeast two-hybrid protein-protein binding assays demonstrated pairwise strong interactions between all synapsins; 3) immunoprecipitations from transfected COS cells confirmed that synapsin II heteromultimerizes with synapsins I and III in intact cells, and similar results were obtained with bacterial expression systems; and 4) quantification of the synapsin III level in synapsin I/II double knockout mice showed that the level of synapsin III is decreased by 50%, indicating that heteromultimerization of synapsin III with synapsins I or II occurs in vivo and is required for protein stabilization. These data suggest that synapsins coat the surface of synaptic vesicles as homo- and heterodimers in which the C-domains of the various subunits have distinct regulatory properties and are flanked by variable C-terminal sequences. The data also imply that synapsin III does not compensate for the loss of synapsins I and II in the double knockout mice."xsd:string
http://purl.uniprot.org/citations/10358015http://purl.org/dc/terms/identifier"doi:10.1074/jbc.274.24.16747"xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/author"Sudhof T.C."xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/author"Hosaka M."xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/date"1999"xsd:gYear
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/name"J Biol Chem"xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/pages"16747-16753"xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/title"Homo- and heterodimerization of synapsins."xsd:string
http://purl.uniprot.org/citations/10358015http://purl.uniprot.org/core/volume"274"xsd:string
http://purl.uniprot.org/citations/10358015http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/10358015
http://purl.uniprot.org/citations/10358015http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/10358015
http://purl.uniprot.org/uniprot/#_Q64332-mappedCitation-10358015http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/10358015
http://purl.uniprot.org/uniprot/#_Q8CE19-mappedCitation-10358015http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/10358015
http://purl.uniprot.org/uniprot/#_O88935-mappedCitation-10358015http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/10358015
http://purl.uniprot.org/uniprot/Q8CE19http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/10358015
http://purl.uniprot.org/uniprot/Q64332http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/10358015
http://purl.uniprot.org/uniprot/O88935http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/10358015