RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/10376874http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/10376874http://www.w3.org/2000/01/rdf-schema#comment"Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function."xsd:string
http://purl.uniprot.org/citations/10376874http://purl.org/dc/terms/identifier"doi:10.1017/s135583829998216x"xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/author"Nakamura Y."xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/author"Ebihara K."xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/date"1999"xsd:gYear
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/name"RNA"xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/pages"739-750"xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/title"C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids."xsd:string
http://purl.uniprot.org/citations/10376874http://purl.uniprot.org/core/volume"5"xsd:string
http://purl.uniprot.org/citations/10376874http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/10376874
http://purl.uniprot.org/citations/10376874http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/10376874
http://purl.uniprot.org/uniprot/#_P12385-mappedCitation-10376874http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/10376874
http://purl.uniprot.org/uniprot/P12385http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/10376874