RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/11118514http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/11118514http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/11118514http://www.w3.org/2000/01/rdf-schema#comment"To date, two different transporters that are capable of transporting alpha-(methylamino)isobutyric acid, the specific substrate for amino acid transport system A, have been cloned. These two transporters are known as ATA1 and ATA2. We have cloned a third transporter that is able to transport the system A-specific substrate. This new transporter, cloned from rat skeletal muscle and designated rATA3, consists of 547 amino acids and has a high degree of homology to rat ATA1 (47% identity) and rat ATA2 (57% identity). rATA3 mRNA is present only in the liver and skeletal muscle. When expressed in Xenopus laevis oocytes, rATA3 mediates the transport of alpha-[(14)C](methylamino)isobutyric acid and [(3)H]alanine. With the two-microelectrode voltage clamp technique, we have shown that exposure of rATA3-expressing oocytes to neutral, short-chain aliphatic amino acids induces inward currents. The amino acid-induced current is Na(+)-dependent and pH-dependent. Analysis of the currents with alanine as the substrate has shown that the K(0. 5) for alanine (i.e., concentration of the amino acid yielding half-maximal current) is 4.2+/-0.1 mM and that the Na(+):alanine stoichiometry is 1:1."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.org/dc/terms/identifier"doi:10.1016/s0005-2736(00)00349-7"xsd:string
http://purl.uniprot.org/citations/11118514http://purl.org/dc/terms/identifier"doi:10.1016/s0005-2736(00)00349-7"xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Sugawara M."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Sugawara M."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Ganapathy V."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Ganapathy V."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Leibach F.H."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Leibach F.H."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Nakanishi T."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Nakanishi T."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Fei Y.-J."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Fei Y.-J."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Ganapathy M.E."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Ganapathy M.E."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Martindale R.G."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/author"Martindale R.G."xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/date"2000"xsd:gYear
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/date"2000"xsd:gYear
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/name"Biochim. Biophys. Acta"xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/pages"7-13"xsd:string
http://purl.uniprot.org/citations/11118514http://purl.uniprot.org/core/pages"7-13"xsd:string