RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/11158585http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/11158585http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/11158585http://www.w3.org/2000/01/rdf-schema#comment"Apoptosis is controlled by a complex interplay between regulatory proteins. Previous work has shown that Xenopus embryos remove damaged cells by apoptosis when irradiated before, but not after, the midblastula transition (MBT). Here we demonstrate that Akt/protein kinase B is activated and mediates an antiapoptotic signal only in embryos irradiated after the MBT. In addition, an increase in xBcl-2/xBax oligomerization and a decrease in xBax homodimerization promote a protective effect against apoptosis only after the MBT. The post-MBT survival mechanism arrests cells in G(1) phase by increasing expression of the cyclin-dependent kinase inhibitor p27(Xic1). p27(Xic1) associates with cyclin D/Cdk4 and cyclin A/Cdk2 complexes to cause G(1)/S arrest, perhaps allowing more time for DNA repair. Taken together, the results define the DNA damage response as an element of the MBT and indicate that multiple mechanisms prevent apoptosis after the MBT."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.org/dc/terms/identifier"doi:10.1073/pnas.98.3.1006"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.org/dc/terms/identifier"doi:10.1073/pnas.98.3.1006"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Finkielstein C.V."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Finkielstein C.V."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Lewellyn A.L."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Lewellyn A.L."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Maller J.L."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/author"Maller J.L."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/date"2001"xsd:gYear
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/date"2001"xsd:gYear
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/name"Proc. Natl. Acad. Sci. U.S.A."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/name"Proc Natl Acad Sci U S A"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/pages"1006-1011"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/pages"1006-1011"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/title"The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/title"The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage."xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/volume"98"xsd:string
http://purl.uniprot.org/citations/11158585http://purl.uniprot.org/core/volume"98"xsd:string
http://purl.uniprot.org/citations/11158585http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/11158585
http://purl.uniprot.org/citations/11158585http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/11158585
http://purl.uniprot.org/citations/11158585http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/11158585
http://purl.uniprot.org/citations/11158585http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/11158585