RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/12086676http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/12086676http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/12086676http://www.w3.org/2000/01/rdf-schema#comment"The regulation of cation content is critical for cell growth. However, the molecular mechanisms that gate the systems that control K+ movements remain unclear. KTN is a highly conserved cytoplasmic domain present ubiquitously in a variety of prokaryotic and eukaryotic K+ channels and transporters. Here we report crystal structures for two representative KTN domains that reveal a dimeric hinged assembly. Alternative ligands NAD+ and NADH block or vacate, respectively, the hinge region affecting the dimer's conformational flexibility. Conserved, surface-exposed hydrophobic patches that become coplanar upon hinge closure provide an assembly interface for KTN tetramerization. Mutational analysis using the KefC system demonstrates that this domain directly interacts with its respective transmembrane constituent, coupling ligand-mediated KTN conformational changes to the permease's activity."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.org/dc/terms/identifier"doi:10.1016/s0092-8674(02)00768-7"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.org/dc/terms/identifier"doi:10.1016/s0092-8674(02)00768-7"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Miller S."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Miller S."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Choe S."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Choe S."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Booth I.R."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Booth I.R."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Roosild T.P."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/author"Roosild T.P."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/date"2002"xsd:gYear
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/date"2002"xsd:gYear
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/name"Cell"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/pages"781-791"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/pages"781-791"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/title"A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/title"A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch."xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/volume"109"xsd:string
http://purl.uniprot.org/citations/12086676http://purl.uniprot.org/core/volume"109"xsd:string
http://purl.uniprot.org/citations/12086676http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/12086676
http://purl.uniprot.org/citations/12086676http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/12086676