RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/12118070http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/12118070http://www.w3.org/2000/01/rdf-schema#comment"S100 proteins have attracted great interest in recent years because of their cell- and tissue-specific expression and association with various human pathologies. Most S100 proteins are small acidic proteins with calcium-binding domains - the EF hands. It is thought that this group of proteins carry out their cellular functions by interacting with specific target proteins, an interaction that is mainly dependent on exposure of hydrophobic patches, which result from calcium binding. S100A13, one of the most recently identified members of the S100 family, is expressed in various tissues. Interestingly, hydrophobic exposure was not observed upon calcium binding to S100A13 even though the dimeric form displays two high- and two low-affinity sites for calcium. Here, we followed the translocation of S100A13 in response to an increase in intracellular calcium levels, as protein translocation has been implicated in assembly of signaling complexes and signaling cascades, and several other S100 proteins are involved in such events. Translocation of S100A13 was observed in endothelial cells in response to angiotensin II, and the process was dependent on the classic Golgi-ER pathway. By contrast, S100A6 translocation was found to be distinct and dependent on actin-stress fibers. These experiments suggest that different S100 proteins utilize distinct translocation pathways, which might lead them to certain subcellular compartments in order to perform their physiological tasks in the same cellular environment."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.org/dc/terms/identifier"doi:10.1242/jcs.115.15.3149"xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/author"Cox J.A."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/author"Heizmann C.W."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/author"Hsieh H.L."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/author"Schafer B.W."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/date"2002"xsd:gYear
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/name"J Cell Sci"xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/pages"3149-3158"xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/title"S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells."xsd:string
http://purl.uniprot.org/citations/12118070http://purl.uniprot.org/core/volume"115"xsd:string
http://purl.uniprot.org/citations/12118070http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/12118070
http://purl.uniprot.org/citations/12118070http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/12118070
http://purl.uniprot.org/uniprot/Q99584#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070
http://purl.uniprot.org/uniprot/P26447#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070
http://purl.uniprot.org/uniprot/P23297#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070
http://purl.uniprot.org/uniprot/P33763#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070
http://purl.uniprot.org/uniprot/P06703#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070
http://purl.uniprot.org/uniprot/P04271#attribution-1F3FD3305F666F874706A82AF800671Ahttp://purl.uniprot.org/core/sourcehttp://purl.uniprot.org/citations/12118070