RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/12499363http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/12499363http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/12499363http://www.w3.org/2000/01/rdf-schema#comment"The catabolism of phenylalanine to 2-phenylethanol and of tryptophan to tryptophol were studied by (13)C NMR spectroscopy and gas chromatography-mass spectrometry. Phenylalanine and tryptophan are first deaminated (to 3-phenylpyruvate and 3-indolepyruvate, respectively) and then decarboxylated. This decarboxylation can be effected by any of Pdc1p, Pdc5p, Pdc6p, or Ydr380wp; Ydl080cp has no role in the catabolism of either amino acid. We also report that in leucine catabolism Ydr380wp is the minor decarboxylase. Hence, all amino acid catabolic pathways studied to date use a subtly different spectrum of decarboxylases from the five-membered family that comprises Pdc1p, Pdc5p, Pdc6p, Ydl080cp, and Ydr380wp. Using strains containing all possible combinations of mutations affecting the seven AAD genes (putative aryl alcohol dehydrogenases), five ADH genes, and SFA1, showed that the final step of amino acid catabolism (conversion of an aldehyde to a long chain or complex alcohol) can be accomplished by any one of the ethanol dehydrogenases (Adh1p, Adh2p, Adh3p, Adh4p, Adh5p) or by Sfa1p (formaldehyde dehydrogenase.)"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m211914200"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m211914200"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Dickinson J.R."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Dickinson J.R."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Hewlins M.J."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Hewlins M.J."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Salgado L.E."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/author"Salgado L.E."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/date"2003"xsd:gYear
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/date"2003"xsd:gYear
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/pages"8028-8034"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/pages"8028-8034"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/title"The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/title"The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae."xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/volume"278"xsd:string
http://purl.uniprot.org/citations/12499363http://purl.uniprot.org/core/volume"278"xsd:string
http://purl.uniprot.org/citations/12499363http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/12499363
http://purl.uniprot.org/citations/12499363http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/12499363
http://purl.uniprot.org/citations/12499363http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/12499363
http://purl.uniprot.org/citations/12499363http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/12499363