RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/15632126http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/15632126http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/15632126http://www.w3.org/2000/01/rdf-schema#comment"The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys(79) methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m414453200"xsd:string
http://purl.uniprot.org/citations/15632126http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m414453200"xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Plevani P."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Plevani P."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Giannattasio M."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Giannattasio M."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Muzi-Falconi M."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Muzi-Falconi M."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Lazzaro F."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/author"Lazzaro F."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/date"2005"xsd:gYear
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/date"2005"xsd:gYear
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/pages"9879-9886"xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/pages"9879-9886"xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/title"The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/title"The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1."xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/volume"280"xsd:string
http://purl.uniprot.org/citations/15632126http://purl.uniprot.org/core/volume"280"xsd:string
http://purl.uniprot.org/citations/15632126http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/15632126
http://purl.uniprot.org/citations/15632126http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/15632126