RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/16007079http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16007079http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16007079http://www.w3.org/2000/01/rdf-schema#comment"The cyclin-dependent kinase inhibitor p27(Kip1) is known as a negative regulator of cell-cycle progression and as a tumour suppressor. Cdk2 is the main target of p27 (refs 2, 3) and therefore we hypothesized that loss of Cdk2 activity should modify the p27(-/-) mouse phenotype. Here, we show that although p27(-/-) Cdk2(-/-) mice developed ovary tumours and tumours in the anterior lobe of the pituitary, we failed to detect any functional complementation in p27(-/-) Cdk2(-/-) double-knockout mice, indicating a parallel pathway regulated by p27. We observed elevated levels of S phase and mitosis in tissues of p27(-/-) Cdk2(-/-) mice concomitantly with elevated Cdc2 activity in p27(-/-) Cdk2(-/-) extracts. p27 binds to Cdc2, cyclin B1, cyclin A2, or suc1 complexes in wild-type and Cdk2(-/-) extracts. In addition, cyclin E binds to and activates Cdc2. Our in vivo results provide strong evidence that Cdc2 may compensate the loss of Cdk2 function."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.org/dc/terms/identifier"doi:10.1038/ncb1284"xsd:string
http://purl.uniprot.org/citations/16007079http://purl.org/dc/terms/identifier"doi:10.1038/ncb1284"xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Kaldis P."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Kaldis P."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Kiyokawa H."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Kiyokawa H."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Aleem E."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/author"Aleem E."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/date"2005"xsd:gYear
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/date"2005"xsd:gYear
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/name"Nat. Cell Biol."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/name"Nat. Cell Biol."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/pages"831-836"xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/pages"831-836"xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/title"Cdc2-cyclin E complexes regulate the G1/S phase transition."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/title"Cdc2-cyclin E complexes regulate the G1/S phase transition."xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/volume"7"xsd:string
http://purl.uniprot.org/citations/16007079http://purl.uniprot.org/core/volume"7"xsd:string
http://purl.uniprot.org/citations/16007079http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/16007079
http://purl.uniprot.org/citations/16007079http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/16007079
http://purl.uniprot.org/citations/16007079http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/16007079
http://purl.uniprot.org/citations/16007079http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/16007079