RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/16094258http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16094258http://www.w3.org/2000/01/rdf-schema#comment"

Objectives

The glutamatergic dysfunction is one of the main hypotheses for the pathophysiology of schizophrenia. N-methyl-D-aspartate receptors are of major interest because phencyclidine, a non-competitive antagonist of N-methyl-D-aspartate receptors, produces a schizophrenia-like psychosis. Therefore, the genes encoding N-methyl-D-aspartate receptor subunits are strong candidates for schizophrenia susceptibility genes. We focused on the N-methyl-D-aspartate receptor subunit NR2D gene in the case-control study of schizophrenia.

Methods

We screened for polymorphisms in exons, exon-intron boundaries and the 5' upstream region of GRIN2D by direct sequencing in 32 Japanese patients. Out of the total 13 single-nucleotide polymorphisms identified, we genotyped 200-201 Japanese patients and 219-221 controls for nine common single-nucleotide polymorphisms (minor allele frequency over 0.05).

Results

None of the nine single-nucleotide polymorphisms showed significant differences in genotype and allele frequencies between cases and controls. We observed significant associations of pairwise haplotypes in three combinations of four single-nucleotide polymorphisms, INT10SNP-EX13SNP2, EX13SNP2-EX13SNP3 and EX6SNP-EX13SNP2, with the disease even after the Bonferroni correction (P=1.094 x 10(-6), Pcorrected=2.297 x 10(-5), P=2.825 x 10(-6), Pcorrected=5.933 x 10(-5) and P=2.02 x 10(-4), Pcorrected=4.242 x 10(-3), respectively). The same results were also obtained using the false discovery rate (BL) method at the threshold P value, 2.908 x 10(-3).

Conclusions

We conclude that the GRIN2D locus is a possible genomic region contributing to schizophrenia susceptibility in the Japanese population."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.org/dc/terms/identifier"doi:10.1097/00041444-200509000-00014"xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/author"Shibata H."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/author"Fukumaki Y."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/author"Ninomiya H."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/author"Makino C."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/author"Tashiro N."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/date"2005"xsd:gYear
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/name"Psychiatr Genet"xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/pages"215-221"xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/title"Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia."xsd:string
http://purl.uniprot.org/citations/16094258http://purl.uniprot.org/core/volume"15"xsd:string
http://purl.uniprot.org/citations/16094258http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/16094258
http://purl.uniprot.org/citations/16094258http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/16094258
http://purl.uniprot.org/uniprot/#_O15399-mappedCitation-16094258http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/16094258
http://purl.uniprot.org/uniprot/#_Q59G17-mappedCitation-16094258http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/16094258
http://purl.uniprot.org/uniprot/Q59G17http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/16094258
http://purl.uniprot.org/uniprot/O15399http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/16094258