RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/16407267http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16407267http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16407267http://www.w3.org/2000/01/rdf-schema#comment"Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m513340200"xsd:string
http://purl.uniprot.org/citations/16407267http://purl.org/dc/terms/identifier"doi:10.1074/jbc.m513340200"xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Korber P."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Korber P."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Schmid A."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Schmid A."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Blaschke D."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Blaschke D."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Barbaric S."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Barbaric S."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Hoerz W."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Hoerz W."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Luckenbach T."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Luckenbach T."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Schermer U.J."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/author"Schermer U.J."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/date"2006"xsd:gYear
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/date"2006"xsd:gYear
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/name"J. Biol. Chem."xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/pages"5539-5545"xsd:string
http://purl.uniprot.org/citations/16407267http://purl.uniprot.org/core/pages"5539-5545"xsd:string