RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/16633561http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16633561http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/16633561http://www.w3.org/2000/01/rdf-schema#comment"The cinnamyl alcohol dehydrogenase (CAD) multigene family in planta encodes proteins catalyzing the reductions of various phenylpropenyl aldehyde derivatives in a substrate versatile manner, and whose metabolic products are the precursors of structural lignins, health-related lignans, and various other metabolites. In Arabidopsis thaliana, the two isoforms, AtCAD5 and AtCAD4, are the catalytically most active being viewed as mainly involved in the formation of guaiacyl/syringyl lignins. In this study, we determined the crystal structures of AtCAD5 in the apo-form and as a binary complex with NADP+, respectively, and modeled that of AtCAD4. Both AtCAD5 and AtCAD4 are dimers with two zinc ions per subunit and belong to the Zn-dependent medium chain dehydrogenase/reductase (MDR) superfamily, on the basis of their overall 2-domain structures and distribution of secondary structural elements. The catalytic Zn2+ ions in both enzymes are tetrahedrally coordinated, but differ from those in horse liver alcohol dehydrogenase since the carboxyl side-chain of Glu70 is ligated to Zn2+ instead of water. Using AtCAD5, site-directed mutagenesis of Glu70 to alanine resulted in loss of catalytic activity, thereby indicating that perturbation of the Zn2+ coordination was sufficient to abolish catalytic activity. The substrate-binding pockets of both AtCAD5 and AtCAD4 were also examined, and found to be significantly different and smaller compared to that of a putative aspen sinapyl alcohol dehydrogenase (SAD) and a putative yeast CAD. While the physiological roles of the aspen SAD and the yeast CAD are uncertain, they nevertheless have a high similarity in the overall 3D structures to AtCAD5 and 4. With the bona fide CAD's from various species, nine out of the twelve residues which constitute the proposed substrate-binding pocket were, however, conserved. This is provisionally considered as indicative of a characteristic fingerprint for the CAD family."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.org/dc/terms/identifier"doi:10.1039/b601672c"xsd:string
http://purl.uniprot.org/citations/16633561http://purl.org/dc/terms/identifier"doi:10.1039/b601672c"xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Lee C."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Lee C."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Davin L.B."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Davin L.B."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Kang C."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Kang C."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Lewis N.G."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Lewis N.G."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Youn B."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Youn B."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Camacho R."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Camacho R."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Moinuddin S.G.A."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/author"Moinuddin S.G.A."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/date"2006"xsd:gYear
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/date"2006"xsd:gYear
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/name"Org. Biomol. Chem."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/name"Org. Biomol. Chem."xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/pages"1687-1697"xsd:string
http://purl.uniprot.org/citations/16633561http://purl.uniprot.org/core/pages"1687-1697"xsd:string