RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/17049931http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/17049931http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/17049931http://www.w3.org/2000/01/rdf-schema#comment"Human ribosomal protein S3 (hS3) has a high apparent binding affinity for the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG). The hS3 ribosomal protein has also been found to inhibit the base excision repair (BER) enzyme hOGG1 from liberating 8-oxoG residing in a 5'-end-labeled oligonucleotide. To understand the in vivo involvement of hS3 in BER, we have turned to RNA interference to generate knockdown of hS3 in cells exposed to DNA damaging agents. Here we show that a 40% knockdown of hS3 resulted in as much as a seven-fold increase in the 24h survival-rate of HEK293 cells exposed to hydrogen peroxide. Significant protection to the alkylating agent methyl methanesulfonate (MMS) was also observed. Protection to the chemotherapeutic alkylating agent Thio-TEPA was only revealed at longer exposure times where the agent became more toxic to untransfected human cells. Overall, these results raise the possibility that hS3 interferes with the repair of the DNA lesions produced by genotoxic agents that potentially could play a role in the onset of cancer and other pathological states such as aging."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.org/dc/terms/identifier"doi:10.1016/j.dnarep.2006.09.004"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.org/dc/terms/identifier"doi:10.1016/j.dnarep.2006.09.004"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Deutsch W.A."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Deutsch W.A."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Hegde V."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Hegde V."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Yadavilli S."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/author"Yadavilli S."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/date"2007"xsd:gYear
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/date"2007"xsd:gYear
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/name"DNA Repair"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/name"DNA Repair"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/pages"94-99"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/pages"94-99"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/title"Knockdown of ribosomal protein S3 protects human cells from genotoxic stress."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/title"Knockdown of ribosomal protein S3 protects human cells from genotoxic stress."xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/volume"6"xsd:string
http://purl.uniprot.org/citations/17049931http://purl.uniprot.org/core/volume"6"xsd:string
http://purl.uniprot.org/citations/17049931http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/17049931
http://purl.uniprot.org/citations/17049931http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/17049931
http://purl.uniprot.org/citations/17049931http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/17049931
http://purl.uniprot.org/citations/17049931http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/17049931