RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/17363249http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/17363249http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/17363249http://www.w3.org/2000/01/rdf-schema#comment"

Background

A common property of signal transduction systems is that they rapidly lose their ability to respond to a given stimulus. For instance in yeast, the mitogen-activated protein (MAP) kinase Hog1 is activated and inactivated within minutes, even when the osmotic-stress stimulus is sustained.

Results

Here, we used a combination of experimental and computational analyses to investigate the dynamic behavior of Hog1 activation in vivo. Computational modeling suggested that a negative-feedback loop operates early in the pathway and leads to rapid attenuation of Hog1 signaling. Experimental analysis revealed that the membrane-bound osmosensor Sho1 is phosphorylated by Hog1 and that phosphorylation occurs on Ser-166. Moreover, Sho1 exists in a homo-oligomeric complex, and phosphorylation by Hog1 promotes a transition from the oligomeric to monomeric state. A phosphorylation-site mutation (Sho1(S166E)) diminishes the formation of Sho1-oligomers, dampens activation of the Hog1 kinase, and impairs growth in high-salt or sorbitol conditions.

Conclusions

These findings reveal a novel phosphorylation-dependent feedback loop leading to diminished cellular responses to an osmotic-stress stimulus."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.org/dc/terms/identifier"doi:10.1016/j.cub.2007.02.044"xsd:string
http://purl.uniprot.org/citations/17363249http://purl.org/dc/terms/identifier"doi:10.1016/j.cub.2007.02.044"xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Borchers C.H."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Borchers C.H."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Hao N."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Hao N."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Dohlman H.G."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Dohlman H.G."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Torres M.P."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Torres M.P."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Parnell S.C."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Parnell S.C."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Behar M."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Behar M."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Elston T.C."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/author"Elston T.C."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/date"2007"xsd:gYear
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/date"2007"xsd:gYear
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/name"Curr. Biol."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/name"Curr. Biol."xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/pages"659-667"xsd:string
http://purl.uniprot.org/citations/17363249http://purl.uniprot.org/core/pages"659-667"xsd:string