RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/18201690http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18201690http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18201690http://www.w3.org/2000/01/rdf-schema#comment"The GRAM domain was found in glucosyltransferases, myotubularins and other membrane-associated proteins. So far, functions for majority of these proteins are yet to be uncovered. In order to address the evolutionary and functional significance of this family members, we have performed a comprehensive investigation on their genome-wide identification, phylogenetic relationship and expression divergence in five different organisms representing monocot/dicot plants, vertebrate/invertebrate animals and yeast, namely, Oryza sativa, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster and Saccharomyces cerevisiae, respectively. We have identified 65 members of GRAM domain family from these organisms. Our data revealed that this family was an ancient group and various organisms had evolved into different family sizes. Large-scale genome duplication and divergence in both expression patterns and functions were significantly contributed to the expansion and retention of this family. Mouse and Drosophila members showed higher divergences in their proteins as indicated by higher Ka/Ks ratios and possessed multiple domains in various combinations. However, in plants, their protein functions were possibly retained with a relatively low divergence as signified by lower Ka/Ks ratios and only one additional domain was combined during evolution. On the other hand, this family in all five organisms exhibited high divergence in their expression patterns both at tissue level and under various biotic and abiotic stresses. These highly divergent expression patterns unraveled the complexity of functions of GRAM domain family. Each member may play specialized roles in a specific tissue or stress condition and may function as regulators of environmental and hormonal signaling."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.org/dc/terms/identifier"doi:10.1016/j.ydbio.2007.11.031"xsd:string
http://purl.uniprot.org/citations/18201690http://purl.org/dc/terms/identifier"doi:10.1016/j.ydbio.2007.11.031"xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Ramamoorthy R."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Ramamoorthy R."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Ramachandran S."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Ramachandran S."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Jiang S.Y."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/author"Jiang S.Y."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/name"Dev. Biol."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/name"Dev. Biol."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/pages"418-432"xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/pages"418-432"xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/title"Comparative transcriptional profiling and evolutionary analysis of the GRAM domain family in eukaryotes."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/title"Comparative transcriptional profiling and evolutionary analysis of the GRAM domain family in eukaryotes."xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/volume"314"xsd:string
http://purl.uniprot.org/citations/18201690http://purl.uniprot.org/core/volume"314"xsd:string
http://purl.uniprot.org/citations/18201690http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/18201690
http://purl.uniprot.org/citations/18201690http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/18201690
http://purl.uniprot.org/citations/18201690http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/18201690
http://purl.uniprot.org/citations/18201690http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/18201690