RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/18400103http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18400103http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18400103http://www.w3.org/2000/01/rdf-schema#comment"

Background

Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary) metabolism as well as genes involved in plant-insect defence signalling.

Results

Using a 70-mer oligonucleotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella) larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881) array elements (including 2,671 genes with AGI annotations) that were differentially expressed (>2-fold; p[t-test] < 0.05) of which 1,686 also changed more than twofold in expression between at least two time points of the time course with p(ANOVA) < 0.05. While the majority of these transcripts were up-regulated within 8 h upon onset of insect feeding relative to untreated controls, cluster analysis identified several distinct temporal patterns of transcriptome changes. Many of the DBM-induced genes fall into ontology groups annotated as stress response, secondary metabolism and signalling. Among DBM-induced genes associated with plant signal molecules or phytohormones, genes associated with octadecanoid signalling were clearly overrepresented. We identified a substantial number of differentially expressed genes associated with signal transduction in response to DBM feeding, and we compared there expression profiles with those of previously reported transcriptome responses induced by other insect herbivores, specifically Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae.

Conclusion

Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.org/dc/terms/identifier"doi:10.1186/1471-2164-9-154"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.org/dc/terms/identifier"doi:10.1186/1471-2164-9-154"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Bohlmann J."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Bohlmann J."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Ehlting J."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Ehlting J."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Aeschliman D.S."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Aeschliman D.S."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Mattheus N."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Mattheus N."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Arimura G."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Arimura G."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Chowrira S.G."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/author"Chowrira S.G."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/name"BMC Genomics"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/name"BMC Genomics"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/pages"154"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/pages"154"xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/title"Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling."xsd:string
http://purl.uniprot.org/citations/18400103http://purl.uniprot.org/core/title"Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling."xsd:string