RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/18849981http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18849981http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/18849981http://www.w3.org/2000/01/rdf-schema#comment"Synaptic proteins are synthesized in the cell body and transported down the axon by microtubule-dependent motors. We previously reported that KIF1Bbeta and KIF1A motors are essential for transporting synaptic vesicle precursors; however the mechanisms that regulate transport, as well as cargo recognition and control of cargo loading and unloading remain largely unknown. Here, we show that DENN/MADD (Rab3-GEP) is an essential part of the regulation mechanism through direct interaction with the stalk domain of KIF1Bbeta and KIF1A. We also show that DENN/MADD binds preferentially to GTP-Rab3 and acts as a Rab3 effector. These molecular interactions are fundamental as sequential genetic perturbations revealed that KIF1Bbeta and KIF1A are essential for the transport of DENN/MADD and Rab3, whereas DENN/MADD is essential for the transport of Rab3. GTP-Rab3 was more effectively transported than GDP-Rab3, suggesting that the nucleotide state of Rab3 regulates axonal transport of Rab3-carrying vesicles through preferential interaction with DENN/MADD."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.org/dc/terms/identifier"doi:10.1038/ncb1785"xsd:string
http://purl.uniprot.org/citations/18849981http://purl.org/dc/terms/identifier"doi:10.1038/ncb1785"xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Hirokawa N."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Hirokawa N."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Tanaka Y."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Tanaka Y."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Niwa S."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/author"Niwa S."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/name"Nat. Cell Biol."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/name"Nat. Cell Biol."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/pages"1269-1279"xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/pages"1269-1279"xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/title"KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/title"KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD."xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/volume"10"xsd:string
http://purl.uniprot.org/citations/18849981http://purl.uniprot.org/core/volume"10"xsd:string
http://purl.uniprot.org/citations/18849981http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/18849981
http://purl.uniprot.org/citations/18849981http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/18849981
http://purl.uniprot.org/citations/18849981http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/18849981
http://purl.uniprot.org/citations/18849981http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/18849981