RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/19704526http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/19704526http://www.w3.org/2000/01/rdf-schema#comment"In plant cells, glycans attached to asparagine (N) residues of proteins undergo various modifications in the endoplasmic reticulum and the Golgi apparatus. The N-glycan modifications in the Golgi apparatus result in complex N-glycans attached to membrane proteins, secreted proteins and vacuolar proteins. Recently, we have investigated the role of complex N-glycans in plants using a series of Arabidopsis thaliana mutants affected in complex N-glycan biosynthesis.1 Several mutant plants including complex glycan 1 (cgl1) displayed a salt-sensitive phenotype during their root growth, which was associated with radial swelling and loss of apical dominance. Among the proteins whose N-glycans are affected by the cgl1 mutation is a membrane anchored beta1,4-endoglucanase, KORRIGAN1/RADIALLY SWOLLEN 2 (KOR1/RSW2) involved in cellulose biosynthesis. The cgl1 mutation strongly enhanced the phenotype of a temperature sensitive allele of KOR1/RSW2 (rsw2-1) even at the permissive temperature. This establishes that plant complex N-glycan modification is important for the in vivo function of KOR1/RSW2. Furthermore, rsw2-1 as well as another cellulose biosynthesis mutant rsw1-1 exhibited also a salt-sensitive phenotype at the permissive temperature. Based on these findings, we propose that one of the mechanisms that cause salt-induced root growth arrest is dysfunction of cell wall biosynthesis that induces mitotic arrest in the root apical meristem."xsd:string
http://purl.uniprot.org/citations/19704526http://purl.org/dc/terms/identifier"doi:10.4161/psb.3.10.6227"xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/author"Frank J."xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/author"von Schaewen A."xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/author"Koiwa H."xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/date"2008"xsd:gYear
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/name"Plant Signal Behav"xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/pages"871-873"xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/title"Role of complex N-glycans in plant stress tolerance."xsd:string
http://purl.uniprot.org/citations/19704526http://purl.uniprot.org/core/volume"3"xsd:string
http://purl.uniprot.org/citations/19704526http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/19704526
http://purl.uniprot.org/citations/19704526http://xmlns.com/foaf/0.1/primaryTopicOfhttps://pubmed.ncbi.nlm.nih.gov/19704526
http://purl.uniprot.org/uniprot/#_F4JTL6-mappedCitation-19704526http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/#_Q38890-mappedCitation-19704526http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/#_Q9XGM8-mappedCitation-19704526http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/#_W8Q2W3-mappedCitation-19704526http://www.w3.org/1999/02/22-rdf-syntax-ns#objecthttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/Q38890http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/Q9XGM8http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/W8Q2W3http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/19704526
http://purl.uniprot.org/uniprot/F4JTL6http://purl.uniprot.org/core/mappedCitationhttp://purl.uniprot.org/citations/19704526