RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/2001356http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2001356http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/2001356http://www.w3.org/2000/01/rdf-schema#comment"The solution structure of recombinant human thioredoxin (105 residues) has been determined by nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Approximate interproton distance restraints were derived from nuclear Overhauser effect (NOE) measurements. In addition, a large number of stereospecific assignments for beta-methylene protons and torsion angle restraints for phi, psi, and chi 1 were obtained by using a conformational grid search on the basis of the intraresidue and sequential NOE data in conjunction with 3JHN alpha and 3J alpha beta coupling constants. The structure calculations were based on 1983 approximate interproton distance restraints, 52 hydrogen-bonding restraints for 26 hydrogen bonds, and 98 phi, 71 psi, and 72 chi 1 torsion angle restraints. The 33 final simulated annealing structures obtained had an average atomic rms distribution of the individual structures about the mean coordinate positions of 0.40 +/- 0.06 A for the backbone atoms and 0.78 +/-0.05 A for all atoms. The solution structure of human thioredoxin consists of a five-stranded beta-sheet surrounded by four alpha-helices, with an active site protrusion containing the two redox-active cysteines. The overall structure is similar to the crystal and NMR structures of oxidized [Katti, S. K., LeMaster, D. M., & Eklund, H. (1990) J. Mol. Biol. 212, 167-184] and reduced [Dyson, J. H., Gippert, G. P., Case, D. A., Holmgren, A., & Wright, P. (1990) Biochemistry 29, 4129-4136] Escherichia coli thioredoxin, respectively, despite the moderate 25% amino acid sequence homology. Several differences, however, can be noted. The human alpha 1 helix is a full turn longer than the corresponding helix in E. coli thioredoxin and is characterized by a more regular helical geometry. The helix labeled alpha 3 in human thioredoxin has its counterpart in the 3(10) helix of the E. coli protein and is also longer in the human protein. In contrast to these structural differences, the conformation of the active site loop in both proteins is very similar, reflecting the perfect sequence identity for a stretch of eight amino acid residues around the redox-active cysteines."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.org/dc/terms/identifier"doi:10.1021/bi00224a017"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.org/dc/terms/identifier"doi:10.1021/bi00224a017"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Forman-Kay J.D."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Forman-Kay J.D."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Clore G.M."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Clore G.M."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Gronenborn A.M."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Gronenborn A.M."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Wingfield P."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/author"Wingfield P."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/date"1991"xsd:gYear
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/date"1991"xsd:gYear
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/name"Biochemistry"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/name"Biochemistry"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/pages"2685-2698"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/pages"2685-2698"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/title"High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/title"High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution."xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/volume"30"xsd:string
http://purl.uniprot.org/citations/2001356http://purl.uniprot.org/core/volume"30"xsd:string
http://purl.uniprot.org/citations/2001356http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/2001356
http://purl.uniprot.org/citations/2001356http://www.w3.org/2004/02/skos/core#exactMatchhttp://purl.uniprot.org/pubmed/2001356