RDF/XMLNTriplesTurtleShow queryShare
SubjectPredicateObject
http://purl.uniprot.org/citations/20304787http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20304787http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://purl.uniprot.org/core/Journal_Citation
http://purl.uniprot.org/citations/20304787http://www.w3.org/2000/01/rdf-schema#comment"Expression of alternative oxidase (AOX) and cyanide (CN)-resistant respiration are often highly enhanced in plants exposed to low-nitrogen (N) stress. Here, we examined the effects of AOX deficiency on plant growth, gene expression of respiratory components and metabolic profiles under low-N stress, using an aox1a knockout transgenic line (aox1a) of Arabidopsis thaliana. We exposed wild-type (WT) and aox1a plants to low-N stress for 7 d and analyzed their shoots and roots. In WT plants, the AOX1a mRNA levels and AOX capacity increased in proportion to low-N stress. Expression of the genes of the components for non-phosphorylating pathways and antioxidant enzymes was enhanced, but differences between WT and aox1a plants were small. Metabolome analyses revealed that AOX deficiency altered the levels of certain metabolites, such as sugars and sugar phosphates, in the shoots under low-N stress. However, the carbon (C)/N ratios and carbohydrate levels in aox1a plants were similar to those in the WT under low-N stress. Our results indicated that the N-limited stress induced AOX expression in A. thaliana plants, but the induced AOX may not play essential roles under stress due to low-N alone, and the C/N balance under low-N stress may be tightly regulated by systems other than AOX."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.org/dc/terms/identifier"doi:10.1093/pcp/pcq033"xsd:string
http://purl.uniprot.org/citations/20304787http://purl.org/dc/terms/identifier"doi:10.1093/pcp/pcq033"xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Noguchi K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Noguchi K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Uchimiya H."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Uchimiya H."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Hachiya T."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Hachiya T."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Takahara K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Takahara K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Kawai-Yamada M."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Kawai-Yamada M."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Terashima I."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Terashima I."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Uesono Y."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Uesono Y."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Watanabe C.K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/author"Watanabe C.K."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/date"2010"xsd:gYear
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/name"Plant Cell Physiol."xsd:string
http://purl.uniprot.org/citations/20304787http://purl.uniprot.org/core/name"Plant Cell Physiol."xsd:string